Prospects of Microwave Heating in Silicon Solar Cell Fabrication – A Review

نویسنده

  • S. D. Das
چکیده

Solar energy is only renewable energy source that does not depend on earth's resources. Current industrial manufacturing of solar cells use manufacturing steps that have many sustainable issues. So it becomes very important to promote technologies that are more sustainable than current state of the art. This paper will look into prospects of microwave heating for silicon solar cell fabrication in this perspective. Microwave heating is very different from conventional heating techniques and application of microwave for semiconductor processing purposes has many advantages. It provides avenue to crystallisation of amorphous solids, reduction of defects, selective heating, reduction in processing time, sintering of powdered materials and so on. Sustainability analysis of microwave heating over conventional heating will be presented to judge its suitability in solar cell fabrication. Status of different technologies using microwave heating which could replace or assist in different fabrication steps of solar cells will be reviewed. Based on these reviews, possible fabrication schemes of silicon solar cells will be presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics

Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are ...

متن کامل

Melting and Processing of Silicon by Microwave Heating

Microwave heating is applied for processing different silicon raw materials, based on the size-, shapeand composition-dependent absorption of radiation of 2.45 and 916 MHz frequency by silicon. In model experiments directed towards the improvement of melting technology, Si-fines and chunks of bulk Silicon from Electronic Grade (EG)and Solar Grade (SG)-silicon production are used as raw material...

متن کامل

Synthesis of TiO2 nanorods with a microwave assisted solvothermal method and their application as dye-sensitized solar cells

Inthiswork, Titanium dioxide (TiO2) nanostructures have beensynthesized via amicrowave assisted solvothermalmethod using titanium tetraisopropoxide (TTIP),polyvinylpyrrolidone(PVP) and Ascorbic Acid (AA) in ethanol. The mole ratio ofPVP/AA was found to be critical in determining the morphology and crystal phaseof the final product. PVP/AA mole ratio varied from 1 up to 1...

متن کامل

Solar cell efficiency enhancement using a hemisphere texture containing metal nanostructures

One major problem of the conventional solar cells is low conversion efficiency. In this work, we have proposed a new design including hemisphere texturing on top and metallic plasmonic nanostructure under the silicon layer to enhance the optical absorption inside the photosensitive layer.    The finite-difference time-domain (FDTD) method has been used to investigate the interaction of light wi...

متن کامل

Probing the Nature of Annealing Silicon Carbide Samples for Solar Cell

SiC powder preparation using Sol-Gel method. The size of nano-particles grows as the temperature exceeds 900° C. Size of probable agglomerations produced, is approximately less than 50nm. The surface is suitable to be used for dye solar cells. SiC emission occurs at wavelength area of 11.3μm or wave number area of 884.95 cm-1. In this paper probing the nature of annealed SiC samples in mixture,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013